plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
↳ QTRS
↳ DependencyPairsProof
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
DIV2(div2(x, y), z) -> TIMES2(y, z)
PLUS2(s1(x), y) -> PLUS2(x, y)
TIMES2(s1(x), y) -> PLUS2(y, times2(x, y))
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
TIMES2(s1(x), y) -> TIMES2(x, y)
DIV2(x, y) -> QUOT3(x, y, y)
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
DIV2(div2(x, y), z) -> TIMES2(y, z)
PLUS2(s1(x), y) -> PLUS2(x, y)
TIMES2(s1(x), y) -> PLUS2(y, times2(x, y))
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
TIMES2(s1(x), y) -> TIMES2(x, y)
DIV2(x, y) -> QUOT3(x, y, y)
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PLUS2(s1(x), y) -> PLUS2(x, y)
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(s1(x), y) -> PLUS2(x, y)
POL(PLUS2(x1, x2)) = 2·x1
POL(s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
TIMES2(s1(x), y) -> TIMES2(x, y)
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES2(s1(x), y) -> TIMES2(x, y)
POL(TIMES2(x1, x2)) = 2·x1
POL(s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
DIV2(x, y) -> QUOT3(x, y, y)
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
DIV2(div2(x, y), z) -> DIV2(x, times2(y, z))
Used ordering: Polynomial interpretation [21]:
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
DIV2(x, y) -> QUOT3(x, y, y)
POL(0) = 0
POL(DIV2(x1, x2)) = 2·x1
POL(QUOT3(x1, x2, x3)) = 2·x1
POL(div2(x1, x2)) = 2 + x1 + 2·x2
POL(plus2(x1, x2)) = 1 + 2·x1 + 2·x2
POL(s1(x1)) = 2 + x1
POL(times2(x1, x2)) = 2 + 2·x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
DIV2(x, y) -> QUOT3(x, y, y)
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV2(x, y) -> QUOT3(x, y, y)
Used ordering: Polynomial interpretation [21]:
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
POL(0) = 1
POL(DIV2(x1, x2)) = 1 + 2·x2
POL(QUOT3(x1, x2, x3)) = x2
POL(s1(x1)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
QUOT3(x, 0, s1(z)) -> DIV2(x, s1(z))
plus2(x, 0) -> x
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(0), y) -> y
times2(s1(x), y) -> plus2(y, times2(x, y))
div2(0, y) -> 0
div2(x, y) -> quot3(x, y, y)
quot3(0, s1(y), z) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
quot3(x, 0, s1(z)) -> s1(div2(x, s1(z)))
div2(div2(x, y), z) -> div2(x, times2(y, z))